Yahoo Italia Ricerca nel Web

Risultati di ricerca

  1. For the most part, the following lists of artillery cover guns, howitzers, mortars, and other large projectile weapons. Small arms and missiles are not generally included, though rockets and other bombardment weapons may be.

    • Overview
    • Early history
    • The 19th century
    • World War I and after
    • World War II
    • Postwar

    rocket and missile system, any of a variety of weapons systems that deliver explosive warheads to their targets by means of rocket propulsion.

    Rocket is a general term used broadly to describe a variety of jet-propelled missiles in which forward motion results from reaction to the rearward ejection of matter (usually hot gases) at high velocity. The propulsive jet of gases usually consists of the combustion products of solid or liquid propellants.

    In a more restrictive sense, rocket propulsion is a unique member of the family of jet-propulsion engines that includes turbojet, pulse-jet, and ramjet systems. The rocket engine is different from these in that the elements of its propulsive jet (that is, the fuel and oxidizer) are self-contained within the vehicle. Therefore, the thrust produced is independent of the medium through which the vehicle travels, making the rocket engine capable of flight beyond the atmosphere or propulsion underwater. The turbojet, pulse-jet, and ramjet engines, on the other hand, carry only their fuel and depend on the oxygen content of the air for burning. For this reason, these varieties of jet engine are called air-breathing and are limited to operation within the Earth’s atmosphere.

    For the purposes of this article, a rocket engine is a self-contained (i.e., non-air-breathing) propulsion system of the type described above, while the term rocket refers to any free-flight (unguided) missile of the types used since the beginning of rocketry. A guided missile is broadly any military missile that is capable of being guided or directed to a target after having been launched. Tactical guided missiles are shorter-ranged weapons designed for use in the immediate combat area. Long-range, or strategic, guided missiles are of two types, cruise and ballistic. Cruise missiles are powered by air-breathing engines that provide almost continuous propulsion along a low, level flight path. A ballistic missile is propelled by a rocket engine for only the first part of its flight; for the rest of the flight the unpowered missile follows an arcing trajectory, small adjustments being made by its guidance mechanism. Strategic missiles usually carry nuclear warheads, while tactical missiles usually carry high explosives.

    There is no reliable early history of the “invention” of rockets. Most historians of rocketry trace the development to China, a land noted in ancient times for its fireworks displays. In 1232, when the Mongols laid siege to the city of K’ai-feng, capital of Honan province, the Chinese defenders used weapons that were described as “arrows of flying fire.” There is no explicit statement that these arrows were rockets, but some students have concluded that they were because the record does not mention bows or other means of shooting the arrows. In the same battle, it is reported, the defenders dropped from the walls of the city a kind of bomb described as “heaven-shaking thunder.” From these meagre references some students have concluded that by 1232 the Chinese had discovered black powder (gunpowder) and had learned to use it to make explosive bombs as well as propulsive charges for rockets. Drawings made in military documents much later show powder rockets tied to arrows and spears. The propulsive jet evidently added to the range of these weapons and acted as an incendiary agent against targets.

    In the same century rockets appeared in Europe. There is indication that their first use was by the Mongols in the Battle of Legnica in 1241. The Arabs are reported to have used rockets on the Iberian Peninsula in 1249; and in 1288 Valencia was attacked by rockets. In Italy, rockets are said to have been used by the Paduans (1379) and by the Venetians (1380).

    Special offer for students! Check out our special academic rate and excel this spring semester!

    Learn More

    There are no details of the construction of these rockets, but they were presumably quite crude. The tubular rocket cases were probably many layers of tightly wrapped paper, coated with shellac. The propulsive charge was the basic black powder mixture of finely ground carbon (charcoal), potassium nitrate (saltpetre), and sulfur. The English scientist Roger Bacon wrote formulas for black powder about 1248 in his Epistola. In Germany a contemporary of Bacon, Albertus Magnus, described powder charge formulas for rockets in his book De mirabilibus mundi. The first firearms appeared about 1325; they used a closed tube and black powder (now referred to as gunpowder) to propel a ball, somewhat erratically, over varying distances. Military engineers then began to invent and refine designs for both guns and rockets.

    By 1668, military rockets had increased in size and performance. In that year, a German colonel designed a rocket weighing 132 pounds (60 kilograms); it was constructed of wood and wrapped in glue-soaked sailcloth. It carried a gunpowder charge weighing 16 pounds. Nevertheless, the use of rockets seems to have waned, and for the nxt 100 years their employment in military campaigns appears to have been sporadic.

    A revival commenced late in the 18th century in India. There Hyder Ali, prince of Mysore, developed war rockets with an important change: the use of metal cylinders to contain the combustion powder. Although the hammered soft iron he used was crude, the bursting strength of the container of black powder was much higher than the earlier paper construction. Thus a greater internal pressure was possible, with a resultant greater thrust of the propulsive jet. The rocket body was lashed with leather thongs to a long bamboo stick. Range was perhaps up to three-quarters of a mile (more than a kilometre). Although individually these rockets were not accurate, dispersion error became less important when large numbers were fired rapidly in mass attacks. They were particularly effective against cavalry and were hurled into the air, after lighting, or skimmed along the hard dry ground. Hyder Ali’s son, Tippu Sultan, continued to develop and expand the use of rocket weapons, reportedly increasing the number of rocket troops from 1,200 to a corps of 5,000. In battles at Seringapatam in 1792 and 1799 these rockets were used with considerable effect against the British.

    The news of the successful use of rockets spread through Europe. In England Sir William Congreve began to experiment privately. First, he experimented with a number of black-powder formulas and set down standard specifications of composition. He also standardized construction details and used improved production techniques. Also, his designs made it possible to choose either an explosive (ball charge) or incendiary warhead. The explosive warhead was separately ignited and could be timed by trimming the fuse length before launching. Thus, air bursts of the warheads were feasible at different ranges.

    Congreve’s metal rocket bodies were equipped on one side with two or three thin metal loops into which a long guide stick was inserted and crimped firm. Weights of eight different sizes of these rockets ranged up to 60 pounds. Launching was from collapsible A-frame ladders. In addition to aerial bombardment, Congreve’s rockets were often fired horizontally along the ground.

    These side-stick-mounted rockets were employed in a successful naval bombardment of the French coastal city of Boulogne in 1806. The next year a massed attack, using hundreds of rockets, burned most of Copenhagen to the ground. During the War of 1812 between the United States and the British, rockets were employed on numerous occasions. The two best-known engagements occurred in 1814. At the Battle of Bladensburg (August 24) the use of rockets assisted British forces to turn the flank of the American troops defending Washington, D.C. As a result, the British were able to capture the city. In September the British forces attempted to capture Fort McHenry, which guarded Baltimore harbour. Rockets were fired from a specially designed ship, the Erebus, and from small boats. The British were unsuccessful in their bombardment, but on that occasion Francis Scott Key, inspired by the sight of the night engagement, wrote “The Star Spangled Banner,” later adopted as the United States national anthem. “The rockets’ red glare” has continued to memorialize Congreve’s rockets ever since.

    In 1815 Congreve further improved his designs by mounting his guide stick along the central axis. The rocket’s propulsive jet issued through five equally spaced holes rather than a single orifice. The forward portion of the guide stick, which screwed into the rocket, was sheathed with brass to prevent burning. The centre-stick-mounted rockets were significantly more accurate. Also, their design permitted launching from thin copper tubes.

    Maximum ranges of Congreve rockets were from one-half mile to two miles (0.8 to 3.2 kilometres), depending upon size. They were competitive in performance and cost with the ponderous 10-inch mortar and were vastly more mobile.

    In the United States, meanwhile, Robert Hutchings Goddard was conducting theoretical and experimental research on rocket motors at Worcester, Mass. Using a steel motor with a tapered nozzle, he achieved greatly improved thrust and efficiency. During World War I Goddard developed a number of designs of small military rockets to be launched from a lightweight hand launcher. By switching from black powder to double-base powder (40 percent nitroglycerin, 60 percent nitrocellulose), a far more potent propulsion charge was obtained. These rockets were proving successful under tests by the U.S. Army when the Armistice was signed; they became the forerunners of the bazooka of World War II.

    World War I actually saw little use of rocket weapons, despite successful French incendiary antiballoon rockets and a German trench-war technique by which a grappling hook was thrown over enemy barbed wire by a rocket with a line attached.

    Many researchers besides Goddard used the wartime interest in rockets to push experimentation, the most noteworthy being Elmer Sperry and his son, Lawrence, in the United States. The Sperrys worked on a concept of an “aerial torpedo,” a pilotless airplane, carrying an explosive charge, that would utilize gyroscopic, automatic control to fly to a preselected target. Numerous flight attempts were made in 1917, some successful. Because of early interest in military use, the U.S. Army Signal Corps organized a separate program under Charles F. Kettering in Dayton, Ohio, late in 1918. The Kettering design used a gyroscope for lateral control to a preset direction and an aneroid barometer for pitch (fore and aft) control to maintain a preset altitude. A high angle of dihedral (upward tilt) in the biplane wings provided stability about the roll axis. The aircraft was rail-launched. Distance to target was determined by the number of revolutions of a propeller. When the predetermined number of revolutions had occurred, the wings of the airplane were dropped off and the aircraft carrying the bomb load dropped on the target.

    The limited time available to attack the formidable design problems of these systems doomed the programs, and they never became operational.

    World War II saw the expenditure of immense resources and talent for the development of rocket-propelled weapons.

    After World War II, unguided, folding-fin rockets fired from multiple-tube pods became a standard air-to-ground munition for ground-attack aircraft and helicopter gunships. Though not as accurate as guided missiles or gun systems, they could saturate concentrations of troops or vehicles with a lethal volume of fire. Many ground forces continued to field truck-mounted, tube-launched rockets that could be fired simultaneously in salvos or ripple-fired in rapid succession. Such artillery rocket systems, or multiple-launch rocket systems, generally fired rockets of 100 to 150 millimetres in diameter and had ranges of 12 to 18 miles. The rockets carried a variety of warheads, including high explosive, antipersonnel, incendiary, smoke, and chemical.

    The Soviet Union and the United States built unguided ballistic rockets for about 30 years after the war. In 1955 the U.S. Army began deployment of the Honest John in western Europe, and from 1957 the Soviet Union built a series of large, spin-stabilized rockets, launched from mobile transporters, given the NATO designation FROG (free rocket over ground). These missiles, from 25 to 30 feet long and two to three feet in diameter, had ranges of 20 to 45 miles and could be nuclear-armed. Egypt and Syria fired many FROG missiles during the opening salvos of the Arab–Israeli War of October 1973, as did Iraq in its war with Iran in the 1980s, but in the 1970s large rockets were phased out of the superpowers’ front line in favour of inertially guided missiles such as the U.S. Lance and the Soviet SS-21 Scarab.

  2. 11 ott 2021 · To train those cannon cockers to be ready to provide devastating fires on command, the Field Artillery School Commandant Brig. Gen. Andrew Preston and his staff are updating, adding and...

  3. The Russian Academy of Rocket and Artillery Sciences (RARAN) is a non-profit scientific organization of the Russian Federation. RARAN coordinates the activities of scientists who carry out complex research and development (R & D) on the creation, operation and use of modern weapons, military technology and special equipment.

  4. The Artillery Command (Italian: Comando Artiglieria, COM.ART.) is an Italian Army command, which trains the personnel destined for the army's artillery units, develops the army's artillery doctrine, and supervises the Italian army's artillery units.

  5. 3 lug 2019 · It's part of a critical effort to defend maneuver units against the threat of aircraft, drones and cruise missiles, said Col. Mark A. Holler, commandant of the Air Defense Artillery School at...

  6. The School of Artillery conducts artillery and JFE training for all RAA job roles (or employment categories), as well as individual training for infantry mortars.